CLASS: XII PRE-MID TERM (2025 – 26) SUBJECT: MATHEMATICS (041)

Time: 2 Hrs.

Max. Mark: 50

General Instructions:

- 1. This question paper contains-five sections A, B, C, D and E. Each section is compulsory. However, there are internal choices in some questions.
- 2. Section-A has 9 MCQ's and 01 Assertion-Reason based question of 1 mark each.
- 3. Section-B has 3 Very Short Answer (VSA)- type questions of 2 marks each.
- 4. Section-C has 5 Short Answer (SA)- type questions of 3 marks each.
- 5. Section-D has 3 Long Answer (LA)- type questions of 5 marks each.
- 6. Section-E has 1 case-based assessment (4 marks) with sub parts.

SECTION A

(Multiple Choice Questions) Each question carries 1 mark.

- 1. If $y = Ae^{5x} + Be^{-5x}$, then $\frac{d^2y}{dx^2}$ is equal to
 - a) 25y
- b) 5v
- c) -25v
- d) 15ν
- 2. The set of points of discontinuity of the function f(x) = x [x], is
 - a) Q
- b) R
- c) N
- d) Z
- 3. If $A = \begin{pmatrix} 2 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 2 \end{pmatrix}$, then value of |adjA| is
 - a) 16
- b) 32
- c) 64
- d) 128
- 4. If A and B are two matrices such that AB = A and BA = B, then B^2 is equal to
 - a) A
- b) B
- c) 1
- 5. If $A = \begin{pmatrix} \alpha & 0 \\ 1 & 1 \end{pmatrix}$ and $B = \begin{pmatrix} 1 & 0 \\ 5 & 1 \end{pmatrix}$, then value of α for which $A^2 = B$, is
- b) -1
- c) 4
- d) No real values
- 6. The principal value of $\sin^{-1}\left(-\frac{\sqrt{3}}{2}\right)$ is
 - a) $-\frac{2\pi}{3}$ b) $-\frac{\pi}{3}$ c) $\frac{4\pi}{3}$ d) $\frac{5\pi}{3}$

- 7. If $\tan^{-1} x = \frac{\pi}{10}$ for some $x \in R$, then the value of $\cot^{-1} x$ is
- a) $\frac{\pi}{\epsilon}$ b) $\frac{2\pi}{\epsilon}$ c) $\frac{3\pi}{\epsilon}$ d) $\frac{4\pi}{\epsilon}$
- 8. Which of the following functions from Z to Z is a bijection?
- a) $f(x) = x^3$ b) f(x) = 2x + 1 c) $f(x) = x^2 + 1$ d) g(x) = x + 2

- 9. If A is the set of even natural number less than 8 & B is the set of prime numbers less than 7, then the number of relations from A to B is
 - a) 9^2
- b) 2^9
- c) 3^2
- d) $9^2 1$
- 10. Of the following statements, choose the correct one.
 - a) Both A and R are true and R is the correct explanation of A.
 - b) Both A and R are true and R is not correct explanation of A.
 - c) A is true but R is false.
- d) A is false but R is true.

Consider the function $f(x) = [\sin x], x \in \left[0, \frac{\pi}{2}\right]$ where $[\cdot]$ denotes greatest integer function.

Assertion (A): f(x) is continuous at $x = \frac{\pi}{2}$.

Reason (R): $\lim_{x \to \frac{\pi}{2}} f(x)$ does not exist.

SECTION B

(This section comprises of very short answer type-questions (VSA) of 2 marks each.)

11. If
$$x^3 + y^3 = 3axy$$
, find $\frac{dy}{dx}$.

OR

If
$$f(x) = \begin{cases} k; & \text{if } x = 2\\ \frac{2^{x+2}-16}{4^x-16}; & \text{if } x \neq 2 \end{cases}$$
 is continuous at $x = 2$, find k .

- 12. Evaluate: $\tan \left(2 \tan^{-1} \frac{1}{5}\right)$.
- 13. Show that the relation R on R defined as $R = \{(a, b): a \le b\}$, is transitive but not symmetric.

SECTION C

(This section comprises of short answer type questions (SA) of 3 marks each.)

- 14. If $y = (\sin^{-1} x)^2$, prove that $(1 x^2)y_2 xy_1 2 = 0$.
- 15. For the matrix $A = \begin{bmatrix} 3 & 1 \\ 7 & 5 \end{bmatrix}$, find x and y so that $A^2 + xI = yA$. Hence, find A^{-1} .
- 16. Show that the points (a + 5, a 4), (a 2, a + 3) and (a, a) do not lie on a straight line for any value of a.
- 17. Express $\begin{pmatrix} 3 & 2 & 5 \\ 4 & 1 & 3 \\ 0 & 6 & 7 \end{pmatrix}$ as the sum of symmetric and skew-symmetric matrices.
- 18. Let $X = R \{3\}$; $Y = R \{1\}$. Consider the function $f(x) = \frac{x-2}{x-3}$. Is f one-one and onto?

OR

Show that the exponential function $f: R \to R$, given by $f(x) = e^x$, is one-one but not onto.

What happens if the co-domain is replaced by R_0^+ .

SECTION D

(This section comprises of short answer type questions (LA) of 5 marks each.)

19. Three shopkeepers A, B and C are using polythene bags, handmade bags and newspaper bags. A use 20,30 and 40 number of bags of respective type. B uses 30, 40 and 20 of each respective kind while C uses 40, 20 and 30 of each type. Each shopkeeper spent Rs.250, Rs.220 and Rs.200 on the bags. Find the cost of each carry bag using matrix method.

If
$$A = \begin{pmatrix} 2 & -3 & 5 \\ 3 & 2 & -4 \\ 1 & 1 & -2 \end{pmatrix}$$
, find A^{-1} . Using A^{-1} , solve the following system of equations: $2x - 3y + 5z = 11$, $3x + 2y - 4z = -5$, $x + y - 2z = -3$.
20. Find $\frac{dy}{dx}y = x^{\cos x} + (\sin x)^{\tan x}$.

- 21. Let A be the set of all positive integers and R be a relation on $A \times A$, defined by $(a,b)R(c,d) \Leftrightarrow ad = bc, \forall (a,b), (c,d) \in A \times A$. Show that R is an equivalence relation on $A \times A$.

SECTION E

(This section comprises of one case-based question of 4 marks with three sub-parts (i), (ii) and (iii) of 1, 1, 2 marks respectively.)

22. Radha and Roshni are two best friends and studying in classes XI and XII respectively. They are playing a game with a matrix $F(x) = \begin{bmatrix} \cos x & -\sin x & 0 \\ \sin x & \cos x & 0 \\ 0 & 0 & 1 \end{bmatrix}$. Roshni asked some questions

from Radha based on given matrix F(x).

Based on above information, Answer the following questions:

i) Show that
$$\frac{1}{2}(F(x) + (F(x))^T)$$
 is a diagonal matrix. (1)

ii) For what value of
$$x \in \left[0, \frac{\pi}{2}\right)$$
, $(F(x))^2$ becomes identity matrix? (1)

iii) a) Show that
$$F(x) \cdot F(y) = F(x+y)$$
. (2)

OR

b) Show that
$$F(x) \cdot F(-y) = F(x - y)$$
. (2)