Class- X Pre Mid Term Examination, 2025-26 Subject- Mathematics (041) Set: B2 ## Time Allowed: 2 Hours Maximum Marks: 50 #### **General Instructions:** - 1. This question paper contains 23 questions. - 2. This Question Paper is divided into 5 Sections A, B, C, D and E. - 3. In Section A, Question no. 1-9 are multiple choice questions (MCQs) and question no. 10 is Assertion- Reason based question of 1 mark each. - 4. In Section B, Question no. 11-15 are very short answer (VSA) type questions, carrying 02 marks each. - 5. In Section C, Question no. 16-19 are short answer (SA) type questions, carrying 03 marks each. - 6. In Section D, Question no. 20-21 are long answer (LA) type questions, carrying 05 marks each. - 7. In Section E, Question no. 22-23 are case study based questions carrying 4 marks each with sub parts of the values of 1, 1 and 2 marks each respectively. - 8. All Questions are compulsory. However, an internal choice in 1 Question of Section B, 1 Question of Section C and 1 Question of Section D has been provided. An internal choice has been provided in all the 2 marks questions of Section E. - 9. Draw neat figures wherever required. - 10. Use of calculators is NOT allowed. | | SECTION A | | | |---|---|-----------------------|---| | | Section A consists of 10 questions of | 1 mark each. | | | 1 | In the adjoining figure, PQ \parallel XY \parallel BC, AP = 2 cm, | - A | 1 | | | PX = 1.5 cm and $BX = 4$ cm. | \wedge | | | | If $QY = 0.75$ cm, then $AQ + CY =$ | / \ | | | | (A) 6 cm | $P \longrightarrow Q$ | | | | (B) 3 cm | X/\Y | | | | (C) 4.5 cm | / | | | | (D) 5.25 cm | $_{\rm B}$ $_{\rm C}$ | 2 Shown below is a graph of a quadratic polynomial. Which of these is the polynomial graphed above? (A) $$(x-2)(x+4)$$ (B) $$(x + 2)(x - 4)$$ (C) $$\frac{1}{2}(x-2)(x+4)$$ (D) $$\frac{1}{2}(x+2)(x-4)$$ 3 The system of equations 2x + 1 = 0 and 3y - 5 = 0 has 1 1 (A) unique solution (C) no solution (B) two solutions - (D) infinite number of solutions - Which of the following quadratic equations has real and equal roots? 4 1 (A) $$(x + 1)^2 = 2x + 1$$ (B) $$x^2 + x = 0$$ (C) $$x^2 - 4 = 0$$ (D) $$x^2 + x + 1 = 0$$ 5 A quadratic equation whose roots are $(2 + \sqrt{3})$ and $(2 - \sqrt{3})$ is : 1 (A) $$x^2 + 4x + 1 = 0$$ (B) $$x^2 - 4x + 1 = 0$$ (C) $$4x^2 - 3 = 0$$ (D) $$x^2 - 1 = 0$$ Two coins are tossed simultaneously. The probability of getting at least one head 6 is 1 - $(A)^{\frac{3}{4}}$ - $(B)^{\frac{1}{4}}$ - $(C)^{\frac{1}{2}}$ - (D) 1 - 7 A pair of irrational numbers whose product is a rational number is: 1 - (A) $(\sqrt{16}, \sqrt{4})$ - (B) $(\sqrt{5}, \sqrt{2})$ (C) $(\sqrt{3}, \sqrt{27})$ (D) $(\sqrt{36}, \sqrt{2})$ | 8 | In \triangle ABC and \triangle DEF, $\frac{AB}{DE} = \frac{BC}{FD}$. Which of the following makes the two triangles | | | | 1 | | |----|--|-----------------------------|----------------------------|---------------------------|---|--| | | similar? | | | | | | | | $(A) \angle A = \angle D$ | $(B) \angle B = \angle D$ | $(C) \angle B = \angle E$ | $(D) \angle A = \angle F$ | | | | 9 | Which of the following cannot be the unit digit of 8^n , where n is a natural | | | | 1 | | | | number? | | | | | | | | (A) 4 | (B) 2 | (C) 0 | (D) 6 | | | | 10 | Statement A (Ass | ertion): In an experi | ment of throwing a d | ie, | 1 | | | | Event E_1 : getting a number less than 3 and Event E_2 : getting a | | | | | | | | number greater than 3 are complementary events. | | | | | | | | Statement R (Reason): If two events E and Fare complementary events, then | | | | | | | | $\mathbf{P}(\mathbf{E}) + \mathbf{P}(\mathbf{F}) = 1.$ | | | | | | | | (A) Both assertion (A) and reason (R) are true and reason (R) is the correct | | | | | | | | explanation of assertion (A) | | | | | | | | (B) Both assertion (A) and reason (R) are true and reason (R) is not the correct | | | | | | | | explanation of asse | | | | | | | | (C) Assertion (A) | is true but reason (R) | is false. | | | | | | (D) Assertion (A) | is false but reason (R) | is true. | | | | | | | SECT | TION B | | | | | | Sec | tion B consists of 5 q | uestions of 2 marks e | each. | | | | 11 | Prove that $3 + 5\sqrt{2}$ | is irrational, given that | $\sqrt{2}$ is irrational. | | 2 | | | 12 | If $217x + 131y$ | = 913 and | | | 2 | | | | 131x + 217y = 827, | | | | | | | | solve the equation | s for the values of x and | nd y. | | | | | 13 | Find the zeroes of | the quadratic polynon | nial $x^2 - 15$ and verify | y the relationship | 2 | | | | between the zeroes | s and the coefficients. | | | | | | 14 | (a) Represent the f | following situations in | the form of quadratic | equation: | 2 | | | | The sides of a rig | ht triangle are such th | nat the longest side is | 4 m more than the | | | | | shortest side and the | ne third side is 2 m les | s than the longest side | | | | | | | C |)R | | | | | (b) Find the value of 'p' for which the quadratic equation $px(x-2)+6=0$ | | | | |--|--|--|--| | has two equal real roots. | | | | | | | | | | | | | | - Two dice are thrown at the same time and the numbers appearing on top are noted. Find the probability of - 2 - (i) Getting a number greater than 3 on each die - (ii) the sum of the numbers is greater than 9. ### **SECTION C** ## Section C consists of 4 questions of 3 marks each. Three measuring rods are of lengths 120 cm, 100 cm and 150 cm. Find the least length of a fence that can be measured an exact number of times, using any of the rods. How many times each rod will be used to measure the length of the fence? 3 3 For what values of k will the following pair of linear equations have infinitely many solutions? $$kx + 3y - (k - 3) = 0$$ $$12x + ky - k = 0$$ **18** 3 (a) In the given figure, if $\angle ACB = \angle CDA$, AC = 8 cm and AD = 3 cm, find BD. OR - (b) If the sides AB, BC and median AD of \triangle ABC are proportional to the corresponding sides PQ, QR and median PM of \triangle PQR, show that \triangle ABC \sim \triangle PQR. - 19 If α and β are zeroes of the polynomial $3x^2 7x 6$ then form a quadratic polynomial whose zeroes are $\alpha 3$ and $\beta 3$. 3 | | Section D cons | |----|--| | 20 | State and prove Basic Proporti | | 21 | (a) Solve graphically the pair of 2x + y = 8; x + 1 = 2y. Also, determine the coordinate lines and the <i>x</i>-axis. (b) Places A and B are 100 km another from B at the same time different speeds, they meet in 5 meet in 1 hour. What are the speeds | | | Case study k | | 22 | Case Study 1 While designing the school year and width of a particular photo the photo. The original photo i | #### **SECTION D** ## sists of 2 questions of 5 marks each. onality Theorem. 5 5 of linear equations: es of the vertices of the triangle formed by these #### OR apart on a highway. One car starts from A and ne. If the cars travel in the same direction at 5 hours. If they travel towards each other, they peeds of the two cars? ## **SECTION E** ## based questions are compulsory. ar book, a teacher asked the student that the length o is increased by x units each to double the area of s 18 cm long and 12 cm wide. Based on the above information, answer the following questions: (i) Write an algebraic equation depicting the above information. 1 (ii) Write the corresponding quadratic equation in standard form. 1 (iii) (a) What should be the new dimensions of the enlarged photo? 2 (iii) (b) Can any rational value of x make the new area equal to 220 cm²? # 23 Case Study 2 After dinner, some people were walking in the park. A person observed the length of shadow of a boy 180 cm tall walking away from the base of a lamp-post 5.4 m high, at a speed of 0.6 m/s. Based on the above information answers the following questions: - (i) How far is he from the lamp-post after 3 seconds? - (ii) Draw a well labelled figure for the given information. - (iii) (a) Find the length of his shadow after 3 seconds. ### OR (iii) (b) After how much time the length of his shadow will be 1.5 m? 1 1 2