

DPS Science & Mathematics TALENT EXAMINATION 2015-2016

Time : 2 hrs.

Total Marks : 100

Guidelines for the Candidate

1. The paper consists of two sections -

Science (60 Questions) : Physics (20 Questions), Chemistry (20 Questions) & Biology (20 Questions) and

Mathematics (40 Questions)

- 2. All questions are compulsory and carry equal marks. There is no negative marking. Use of calculator is not permitted.
- 3. Write your Name, School Name and Roll No. clearly on the OMR sheet and do not forget to sign.
- 4. There is only one correct answer hence mark one choice only.
- 5. Darken your choice with HB Pencil or Blue / Black Ball Point Pen only.

For example :

- Q.16: In the water cycle, condensation is the process of
 - (A) Water vapour cooling down and turning into a liquid
 - (B) Ice warming up and turning into a liquid
 - (C) Liquid cooling down and turning into ice
 - (D) Liquid warming up and turning into water vapour

As the correct answer is option (A), the candidate should darken the circle corresponding to option (A).

6. Rough work should be done in the blank space provided in the booklet.

A Collaborative Project of DPS Society & Science Olympiad Foundation

For latest updates & information on Facebook please like 🖞 our page 🛛 www. facebook.com/sofworld

PHYSICS

1.	a distance of 7 km. What should be the speed of a car moving in opposite direction if the two cars at an interval of 4 minutes?	it is to meet
	(A) 30 km h^{-1} (B) 45 km h^{-1} (C) 60 km h^{-1} (D) 105 km	n h ⁻¹
2.	 A man tries to remain in equilibrium by pushing with his hands and feet against two as shown. Which of the following is not correct in order to remain in equilibrium? (A) He must exert equal forces on the two walls. (B) Friction must be present on both walls. (C) The forces of friction at the two walls can be unequal. (D) None of these. 	parallel walls
3.		ance between
	the forces when the two forces are interchanged. The ratio of the two forces is (A) 1:2 (B) 2:3 (C) 3:4 (D) 3:5	
4.		Q P P
5.	 0 → Time 0 → Time 0	echo is heard
6.		e glass
7.	 7. Which of the following statements are incorrect? (i) A freely falling body does not attract the earth. (ii) The value of gravitational constant on the moon is about one-sixth that of on the (iii) In a gravity-free space, the weight of a body becomes zero. (iv) Acceleration due to gravity acting on a freely falling body depends on its mass. (A) (i) and (iii) (B) (ii) and (iv) (C) (i), (ii) and (iv) (D) (ii), (iii) 	
8.	Initially, the cable car is at point X and at rest. It accelerates at 1.5 m s ⁻² for a time of 2 s. Then it moves at constant speed for 100 s and finally decelerates to rest in 3 s to reach point Y. The change in vertical height of the cable car is (A) 60 m (B) 67.5 m 300	0 m
	(C) 300 m (D) 307.5 m	

2

-

S₿F

_	(A)	1 g cm ⁻³		(B) 7	g cm ⁻³		(C)	8.5 g cm ⁻³		(D) 3	39.5 g cm ⁻³
0.	to the totang of the totang	lane mirror he floor str le of inclina he ray, wha reflected ra	rikes the ition is in t is the	e mirror ncrease	and a re d to 55° w in angle	eflected ray	y is f nging ie inc	ormed. If the the direction	ne on	(D) 3	Annu 40°
4						stad upon				(0)	
1.		ody of mas ndicated in							Le.	2 <i>F</i> +	orce
	(A) (C)	$\frac{F^2t^2}{2m}$ $\frac{F^2t^2}{8m}$						$\frac{3F^2t^2}{8m}$ $\frac{9F^2t^2}{8m}$		0 -F	t 3t/2
2			of the u	vibration	a produc	ad by a ba	12 020		When thi	e hody	/ is placed bene
2.		surface of							when th	s bouy	ris placed belle
		ke, speed of							m s ⁻¹ re	spectiv	vely)
	(A)	A sound of	-				(5)	A 1 F	Fraguiana	/ 70 Hz	
	(, .)	A sound of	frequenc	cy 15 Hz			(B)	A sound of	requency	/ /0/12	
	(C)	A sound of	frequenc	cy 55 Hz			(D)	No sound.			
13.	(C) A st thro	A sound of tudent, whil	frequence e doing angular e	an expe glass sla	ab, meas	ured the th	(D) ne pat ree a	No sound. th of a ray o ngles marke	of light pa	assing	
13.	(C) A st thro θ ₃ in	A sound of tudent, whil	frequence le doing angular s measu	an expe glass sla	ab, meas	ured the th	(D) ne pat ree a f he v	No sound. th of a ray o ngles marke	o <mark>f light p</mark> a ed as θ ₁ ,	assing	
13.	(C) A st thro θ ₃ in (A)	A sound of tudent, whil ough a recta n figure. His	frequence le doing angular s measu	an expe glass sla	ab, meas	ured the th	(D) ne pat ree a f he v (B)	No sound. th of a ray o ngles marko were to find	of light part and as θ_1 , $\theta_1 = \theta_3$	assing	
	 (C) A state Heige A friction A friction<	A sound of tudent, while ough a rectain figure. His $\theta_1 < \theta_2 < \theta_3$	frequence e doing angular s measu a d, a bo He then ocity at t e again	an expe glass sla urements by of 40 slides of the end of	ab, measu s could b kg climb lown the of the slo	ured the th e correct it os up a co slope whic pe is 2 m s	(D) ne pat ree a f he v (B) (D) oncret ch ha s ⁻¹ . Th	No sound. th of a ray of ngles marked were to find $\theta_1 < \theta_2$, but $\theta_1 > \theta_2$, but te slide of a length he average	of light part and as θ_1 , $\theta_1 = \theta_3$	assing	
14.	(C) A st thro θ_3 in (A) (C) At a heig of 6 fric (Tal (A) (C) A c	A sound of tudent, while ough a recta n figure. His $\theta_1 < \theta_2 < \theta_3$ $\theta_1 > \theta_2 > \theta_3$ a playgrour ght 2.5 m. His tional forc ke g = 10 m 100 N 150 N	frequence e doing angular s measu a and, a bo He then bcity at t e again a s ⁻²) ce is ap ssuming	by 55 Hz an expendent glass slaurements by of 40 slides of the end of the end of the the l	ab, measus s could b kg climb lown the of the slo boy's mo a body w e effects	ured the th e correct if os up a co slope whic pe is 2 m s otion along which is in of friction	(D) ne pat ree a f he v (B) (D) oncret ch ha s ⁻¹ . Th g the (B) (D) itially are n	No sound. th of a ray of ngles marked were to find $\theta_1 < \theta_2$, but $\theta_1 > \theta_2$, but te slide of s a length he average slope, is 120 N 180 N	of light particular decision of the second	assing θ ₂ and	θ1 θ2 2.5 m 2 m

16. Two spherical planets PI and PII have masses and densities in the ratio 1 : 2 and 4 : 1 respectively. Then the ratio of acceleration due to gravity at the surface of PI to that at the surface of PI is
(A) 1:2
(B) 2:1
(C) 4:1
(D) 1:4

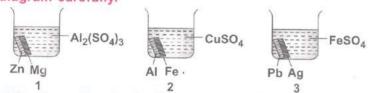
17.	 Read the given statements and select the correct Statement 1 : The two arms of a tuning fork vibr Statement 2 : Both arms of the tuning fork send (A) Both statements 1 and 2 are true and statement 2 (B) Both statements 1 and 2 are true but statement 2 (C) Statement 1 is true but statement 2 is false. (D) Both statements 1 and 2 are false. 	ate with sam sound wave is the correct	in the sam explanation	e direction. of statement	
18.	 A small metallic sphere is dropped from a great h it acquires a constant velocity. It then completes Which of the following statements is correct? (A) Kinetic energy of the sphere first decreases and th (B) Potential energy of the sphere first increases and th (C) Kinetic energy of the sphere always increases. (D) Potential energy of the sphere always decreases. 	its downwar	d motion wi		
19.	Four processes are used to charge an isolated m P_1 : The sphere is earthed by touching it. P_2 : The earth connection is removed from the sp P_3 : A charged rod is brought close to the sphere P_4 : The charged rod is removed. In which order should these processes be carried (A) $P_1 \rightarrow P_2 \rightarrow P_3 \rightarrow P_4$ (B) $P_1 \rightarrow P_3 \rightarrow P_4 \rightarrow P_2$	here. I out to char			$P_4 \rightarrow P_1 \rightarrow P_2$
20.	The given figure shows a circular park of radius <i>I</i> Three friends <i>X</i> , <i>Y</i> and <i>Z</i> start from point <i>A</i> and re The paths followed by <i>X</i> , <i>Y</i> and <i>Z</i> are <i>ACDEB</i> , <i>AC</i> Then the ratio of distances travelled by <i>X</i> , <i>Y</i> and (A) $\sqrt{2}:2:(2\sqrt{2}+1)$ (C) $\sqrt{2}:\sqrt{2}:1$	each point <i>B</i> OEB and AC	via differer CFEB respec 2+√2)	1	
	CHEMIS	TRY			
21.	 Some properties of five substances are shown in the given table. At room temperature, which of the following statements are incorrect? I. <i>R</i> is a liquid non-metal. II. <i>T</i> is used for electrical wiring. III. <i>P</i> is a solid non-metal. IV. <i>Q</i> is a gaseous non-metal. V. <i>S</i> is a solid metal. (A) I, III and V (B) I, IV and V 	Substance P Q R S T (C) II and I	Melting point (°C) 44 -7.2 -101 -39 660	Boiling point (°C) 280 59 -35 357 2470 (D) All of	Electrical conductivity Poor Poor Good Good
22.	Which of the following will have mass equal to 8I.0.5 mole of O_2 gasIII.6.022 × 10 ²³ molecules of O_2 (A)II and IV(B)II and III	II. 0.5 mc	ele of O ator × 10 ²³ atom	ms	of these
23.	The masses of cane sugar and water required to respectively(A) 50.2 g, 295.7 g(B) 297.5 g, 52.5 g	prepare 350 (C) 52.5 g,		olution of c (D) 62.5	

24. The given table shows the composition of six particles, represented by the letters *M* to *R*. The particles are atoms or ions. (The letters are not the symbols of the elements.) Fill in the blanks by choosing an appropriate option. The two particles which are an atom and a positive ion of the same element are <u>1</u> and <u>2</u> respectively. The other two particles which are an atom and a negative ion of the same element are <u>3</u> and <u>4</u> respectively.

Particle	Number of						
	Electrons	Protons	Neutrons				
М	8	8	8				
N	10	8	8				
0	10	8	10				
Р	10	12	12				
Q	10	11	12				
R	12	12	12				

		~	3	4	
(A)	P	Q	М	0	
(B)	Ν	M	Ρ	R	
(C)	Ρ	R	0	N	
(D)	R	Ρ	Μ	N	

2


0

4

25. Match the column I with column II and select the correct option from the given codes.

	Co	lumn				Column II
	(Po	olyme	r)			(Used to make)
(P)	Ba	kelite			1.	Water tanks
(Q)	Ny	lon			2.	Ropes, mats
(R)	Co	ir			3.	Radio, telephone set
(S)	PV	С			4.	Fishing net
	Ρ	Q	R	S		
(A)	3	2	4	1		
(B)	3	4	2	1		
(C)	1	3	4	2		
(D)	4	3	1	2		

26. Observe the given diagram carefully.

Match the column I with column II and select the correct option from the given codes. Column I Column II

- (i) Both the metal strips dissolve
- (ii) Reaction takes place but no colour change
- (iii) None of the metal strips dissolves
- (A) (i) p, (ii) q, (iii) r (B) (i) r, (ii) q, (iii) p (C) (i) q, (ii) r, (iii) p (D) (i) q, (ii) p, (iii) r

p.

q.

r.

Beaker 1

Beaker 2

Beaker 3

27. In Rutherford's gold foil experiment, most of the α -particles passed through the gold foil without any deviation from their paths. This indicates that

- (A) The atom is spherical
- (B) There is a positively charged nucleus at the centre of the atom
- (C) The entire mass of the atom is concentrated at the nucleus of the atom
- (D) Most of the space inside the atom is empty.

28. Read the given statements and select the correct option.

Statement 1 : The colour of LPG flame is blue while a candle flame is yellow.

Statement 2 : LPG undergoes complete combustion while wax undergoes incomplete combustion.

- (A) Both statements 1 and 2 are true and statement 2 is the correct explanation of statement 1.
- (B) Both statements 1 and 2 are true but statement 2 is not the correct explanation of statement 1.
- (C) Statement 1 is true and statement 2 is false.
- (D) Both statements 1 and 2 are false.

- 29. Read the following statements carefully.
 - (i) Coal, petroleum and natural gas are called fossil fuels.
 - (ii) Coal and natural gas are two exhaustible substances.
 - (iii) Coal gas is used as a source of heat.
 - (iv) Fossil fuels are present in limited quantities.
 - The correct statements are
 - (A) (i) and (ii) (B) (i) and (iv) (C) (i), (ii) and (iii) (D) All of these.

Temperature(°C)

60

40

20

0 t1

 $t_2 t_3$ Time (min)

(D) Chudont C

ta ta

- 30. A beaker containing hot liquid 'P' is placed on a table in a room. Changes in temperature of the beaker and its contents are shown in the given diagram. Which of the following statements are correct?
 - I. At time t_2 , *P* begins to freeze.
 - II. At time t_2 and t_3 , hot liquid and cold liquid exist in equilibrium.
 - III. The boiling point of P is 35°C.
 - IV. At time t₄, P exists in the solid state.
 - (A) II and III (B) I and IV (C) I, III and IV (D) All of these
- 31. Mrs. Sangeeta, a science teacher has given a mixture containing benzene and dilute solution of sodium chloride in water to four students. She asked them to obtain samples of benzene and solid sodium chloride from the mixture.

The techniques used by students are listed in the given table.

Student	First technique	Second technique
Р	Use a separating funnel	Filtration
Q	Distillation	Filtration
R	Filtration	Crystallization
S	Use a separating funnel	Evaporation

The correct techniques are adopted by

	(A)	Student Q	(B) Student R	(C)	Student P	(D) Stude	an o.
32.	Find	d the incorrect	match.	0			
	(A)	Thermoplastic -	Bakelite	(B)	Synthetic fibre -	Rayon	
	(C)	Cotton and woo	llen clothes – Biodegradable	(D)	Fire-proof plastic	- Melamine	
33.	Pho	sphorus is stor	red in water while sodium is	stored	in kerosene bec	ause	
	(A)	Non-metals read	t with oxygen and water vigorou	usly while	e metals do not re	act with water.	
	(B)	Metals react vig	orously with oxygen and water w	vhile nor	n-metals do not rea	act with water.	
	(C)	They are non-re	active towards air.				
	(D)	None of these.					
34.	The	electronic arra	ngements of three elements	are sho	own in the given	figure.	
	Mar	rk the correct o	ption.				
		Isobars	Isotopes		1 1 and 1		
	(A)	X and Y	Y and Z		$\left(\left(\begin{pmatrix} 18 \\ 22 \\ n \end{pmatrix} \right) \right) \right)$	$\left(\begin{array}{c} \bullet \\ \bullet \\ \bullet \\ \left(\begin{array}{c} 20 \\ 22 \\ n \end{array} \right) \\ \bullet \\ \bullet \\ \bullet \\ \end{array} \right)$	$\left(\begin{array}{c} \bullet \\ \bullet \\ \bullet \\ \end{array} \right) \left(\begin{array}{c} 20 \\ 20 \\ n \end{array} \right) \left(\begin{array}{c} \bullet \\ \bullet \\ \end{array} \right) \left(\begin{array}{c} 20 \\ 20 \\ n \end{array} \right) \left(\begin{array}{c} \bullet \\ \bullet \\ \end{array} \right) \left(\begin{array}{c} 20 \\ 20 \\ n \end{array} \right) \left(\begin{array}{c} \bullet \\ \bullet \\ \end{array} \right) \left(\begin{array}{c} 20 \\ 0 \\ 0 \\ \end{array} \right) \left(\begin{array}{c} \bullet \\ \bullet \\ \end{array} \right) \left(\begin{array}{c} 20 \\ 0 \\ 0 \\ \end{array} \right) \left(\begin{array}{c} 0 \\ 0 \\ 0 \\ \end{array} \right) \left(\begin{array}{c} 0 \\ 0 \\ 0 \\ \end{array} \right) \left(\begin{array}{c} 0 \\ 0 \\ 0 \\ \end{array} \right) \left(\begin{array}{c} 0 \\ 0 \\ 0 \\ \end{array} \right) \left(\begin{array}{c} 0 \\ 0 \\ 0 \\ \end{array} \right) \left(\begin{array}{c} 0 \\ 0 \\ 0 \\ \end{array} \right) \left(\begin{array}{c} 0 \\ 0 \\ 0 \\ \end{array} \right) \left(\begin{array}{c} 0 \\ 0 \\ 0 \\ 0 \\ \end{array} \right) \left(\begin{array}{c} 0 \\ 0 \\ 0 \\ \end{array} \right) \left(\begin{array}{c} 0 \\ 0 \\ 0 \\ \end{array} \right) \left(\begin{array}{c} 0 \\ 0 \\ 0 \\ 0 \\ \end{array} \right) \left(\begin{array}{c} 0 \\ 0 \\ 0 \\ \end{array} \right) \left(\begin{array}{c} 0 \\ 0 \\ 0 \\ \end{array} \right) \left(\begin{array}{c} 0 \\ 0 \\ 0 \\ \end{array} \right) \left(\begin{array}{c} 0 \\ 0 \\ 0 \\ 0 \\ \end{array} \right) \left(\begin{array}{c} 0 \\ 0 \\ 0 \\ 0 \\ \end{array} \right) \left(\begin{array}{c} 0 \\ 0 \\ 0 \\ 0 \\ \end{array} \right) \left(\begin{array}{c} 0 \\ 0 \\ 0 \\ 0 \\ \end{array} \right) \left(\begin{array}{c} 0 \\ 0 \\ 0 \\ 0 \\ \end{array} \right) \left(\begin{array}{c} 0 \\ 0 \\ 0 \\ 0 \\ \end{array} \right) \left(\begin{array}{c} 0 \\ 0 \\ 0 \\ 0 \\ \end{array} \right) \left(\begin{array}{c} 0 \\ 0 \\ 0 \\ 0 \\ \end{array} \right) \left(\begin{array}{c} 0 \\ 0 \\ 0 \\ 0 \\ \end{array} \right) \left(\begin{array}{c} 0 \\ 0 \\ 0 \\ 0 \\ \end{array} \right) \left(\begin{array}{c} 0 \\ 0 \\ 0 \\ 0 \\ \end{array} \right) \left(\begin{array}{c} 0 \\ 0 \\ 0 \\ 0 \\ \end{array} \right) \left(\begin{array}{c} 0 \\ 0 \\ 0 \\ 0 \\ \end{array} \right) \left(\begin{array}{c} 0 \\ 0 \\ 0 \\ 0 \\ \end{array} \right) \left(\begin{array}{c} 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ \end{array} \right) \left(\begin{array}{c} 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ \end{array} \right) \left(\begin{array}{c} 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ \end{array} \right) \left(\begin{array}{c} 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ \end{array} \right) \left(\begin{array}{c} 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ \end{array} \right) \left(\begin{array}{c} 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ \end{array} \right) \left(\begin{array}{c} 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ \end{array} \right) \left(\begin{array}{c} 0 \\ 0 \\ 0 \\ 0 \\ \end{array} \right) \left(\begin{array}{c} 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ \end{array} \right) \left(\begin{array}{c} 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ \end{array} \right) \left(\begin{array}{c} 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ \end{array} \right) \left(\begin{array}{c} 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ \end{array} \right) \left(\begin{array}{c} 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ \end{array} \right) \left(\begin{array}{c} 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ \end{array} \right) \left(\begin{array}{c} 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 $
	(B)	Y and Z	X and Z				
	(C)	Z and X	X and Y			Element Y	Element Z
	(D)	X and Z	Y and Z		Element X	Element y	Element Z

35. Copper oxide was obtained by two different methods. In method I, 1.75 g of copper gave 2.19 g of copper oxide while in method II, 1.14 g of copper gave 1.43 g of copper oxide. This illustrates the

- (A) Law of multiple proportions
- (C) Law of reciprocal proportions

- (B) Law of constant proportions
- (D) Dalton's atomic theory.

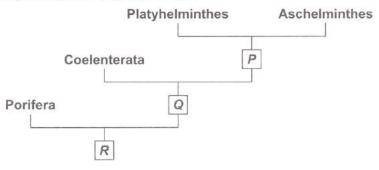
36.	Saurabh conducted an e complete burning, product Which fuel is more efficient (A) Fuel 1 because its call (B) Fuel 2 because its call (C) Both fuels are equally (D) Fuel 1 because its call	ent and why? orific value is 72,0 orific value is 40,0 efficient as large	f heat w 2000 kJ/kg 2000 kJ/kg amount	hile 3.0 g. g. of heat is	kg of fuel	2 produc	ced 120,0	000 kJ of heat.	1
37.	Read the following state X : It is used in the marked Y : It is a petroleum prozent Z : It is obtained from X	nufacture of ste oduct, used in p natural gas and	el and i lace of	coal tar	for metal	lling the	roads.		
	X, Y and Z are respective(A) Coal tar, Coke and Ni			(B)	Coke, Bitu	umen and	Hydroge	n	
	(C) Black gold, Diesel and				Bitumen, I				
38.	The molecular formula of carefully. (Atomic mass 1. One mole of boron 2. The percentage by 3. The empirical formula The incorrect statement (A) 1 and 3 The given table shows ethanol and chloroform	of B = 11 u and sulphide contain mass of boron i ila of boron sulf (s) is/are (B) 1, 2 and 3 number of gram	S = 32 ns 96 g n boron phide is	u) of sulphid B ₂ S ₃ . (C)	iur. le is 81.4 2 only	%.	(D) 1	None of these.	
				Subs	tances				
		Solvent	Ι			IV			
		Water Ethanol Chloroform	38.0 0.0 0.0	202.0 0.0 0.0	0.8 22.0 4.0	110.0 18.0 0.0			
	The substance which dis in ethanol are respectiv (A) III and I		ater at 2		t he subst I and II	ance whi		n <mark>aximum solubilit</mark> I and III	у
40.	 Which of the following p 1. Mothballs become a 2. Balloons deflate an 3. The aroma of coffe 4. A puddle of water of (A) 1 and 2 	smaller when ex d become small e spreads throu	posed t er. gh the a	o air. iir.	n has occ 1, 2 and		(D)	2, 3 and 4	
			BIOL	.OGY			<u>,</u> -, -		
41.	In an experiment, a scie	entist removed f	he nucl	eolus fro	om a sing	gle-celled	d eukary	ote. The organisi	m

41. In an experiment, a scientist removed the nucleolus from a single-celled eukaryote. The organic could not survive. What could be the reason for this?

- (A) It could not obtain energy by respiration.
- (B) It could not undergo cell division because spindle could not be formed.
- (C) It could not modify and transport the metabolites produced in its body.
- (D) It could not manufacture its proteins.

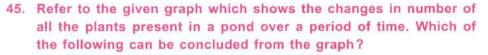
36.		abh conducted an ex plete burning, produce							
		ch fuel is more efficie				1979) / Alaman (1979)			
	(A) Fuel 1 because its calorific value is 72,000 kJ/kg.								
	(B) Fuel 2 because its calorific value is 40,000 kJ/kg.								
	the time stand of the time stand of the time to the ti								
		Fuel 1 because its calo				produced	on sam		
					9.				
37.		the following staten			Alex au	Avention of	f many	motolo	
		It is used in the man							
		It is a petroleum pro- It is obtained from na							
		and Z are respective		15 useu	in the j	Jourenoi	i or ieru	nooro.	
		Coal tar, Coke and Nitr			(B)	Coke, Bitu	imen and	Hvdroo	aen
		Black gold, Diesel and				Bitumen, F			
	· · · ·	U							A Abita in a surray a surray
38.		molecular formula of				the giver	statem	ents ar	bout this compound
		fully. (Atomic mass o				hur			
		One mole of boron s The percentage by m					2/0		1.3
		The empirical formul							Ť
		incorrect statement(s			-2-3-				
			(B) 1, 2 and 3		(C)	2 only		(D)	None of these.
		given table shows n		of fou			ances di	ssolve	d in 100 g of water
39.		nol and chloroform a		is of fou	r unter	ent subst	ances u	330110	a in too g of mator
	etita			1	Sub	stances			
			Solvent		II		IV		
			Water	38.0	202.0	0.8	110.0		
			Ethanol	0.0	0.0	22.0	18.0		
			Chloroform	0.0	0.0	4.0	0.0		
	-	substance which diss	eluce beet in u	inter at 2	0°C and	the subst	ance wh	ich has	maximum solubility
		thanol are respective		aler al 2	U C and	the subst	ance wit	GITTUS	indxinian oorabiirij
			(B) II and IV		(C)	I and II		(D)	II and III
S		III and I						(-)	
40.	Whi	ch of the following p				n has occ	urred?		
	1.	Mothballs become s			o air.				
	2.	Balloons deflate and			i.e.				
	3.	The aroma of coffee A puddle of water di							
	4. (A)	1 and 2	(B) 2 and 3	or adyo.	(C)	1, 2 and 3	3	(D)	2, 3 and 4
1000	(A)	T and Z		DIOL				. ,	
				BIOL	UGT	管制管护机器器			
41.	In a	n experiment, a scie	ntist removed	the nucl	eolus f	rom a sing	gle-celle	d euka	ryote. The organism
		Id not survive. What							
	(A)	It could not obtain ene	rgy by respiratio	n.					
	(B)	It could not undergo c	ell division beca	use spind	le could	not be form	med.		

(C) It could not modify and transport the metabolites produced in its body.


(D) It could not manufacture its proteins.

10

42. Ravi was studying a permanent slide of a tissue and noted down the following observations in his note book.


- Cells lack walls and are pillar-like in appearance.
- A single, centrally placed nucleus is present in all the cells.
- No cilia or flagella are present.
- In which of the following specimens can you find this type of tissue?
- (A) Internodal section of maize stem (B) Section of a human blood vessel
- (C) Section of human oviducts cut from end near the ovary (D) None of these

43. A cladogram drawn by a student is shown here.

Select the option that correctly identifies the character P, Q or R.

- (A) P represents presence or absence of mesodermal layer.
- (B) Q represents presence or absence of bilateral symmetry.
- (C) R represents presence or absence of coelom.
- (D) P represents presence or absence of tissue organisation.
- 44. Read the given statements and select the correct option regarding them. Statement 1 : STDs do not spread by casual physical contact, like handshakes etc. Statement 2 : STD microbes are communicated by exchange of body fluids only.
 - (A) Both statements 1 and 2 are true and statement 2 is the correct explanation of statement 1.
 - (B) Both statements 1 and 2 are true but statement 2 is not the correct explanation of statement 1.
 - (C) Statement 1 is true but statement 2 is false.
 - (D) Both statements 1 and 2 are false.

- (A) At time P, a new exotic plant species was introduced in the pond.
- (B) At time P, a large amount of nitrate and phosphate fertilisers was washed down into the pond.
- (C) At time Q, an oil spill occurred in the pond from a nearby factory.
- (D) At time Q, the oxygen concentration in the pond increased dramatically due to input of sewage.

46. Match the column I with column II and select the correct option from the given codes. Column I

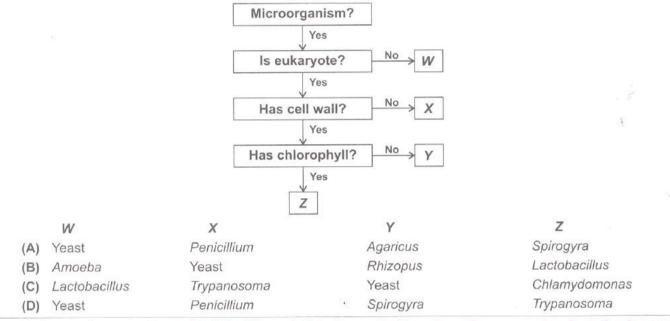
- Echo-sounders a.
- b. Frieswal
- Polymorphic species C.
- d. Ranikhet disease
- e. Fish rearing
- (A) a (i), b (ii), c (iii), d (iv), e (v)
- (C) a (iii), b (iv), c (v), d (ii), e (i)

- Column II
- (i) Pisciculture
- (ii) Poultry farming
- (iii) Fisheries
- (iv) Cattle farming
- (v) Apiculture
- (B) a (i), b (v), c (ii), d (iv), e (iii)
- (D) a (v), b (iv), c (iii), d (ii), e (i)

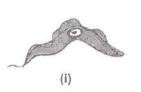
8

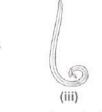
of plants Number 0 Time →

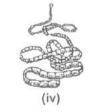
47. Read the following statements.


١.

11.


- is a traditional method of irrigation while ______ is a modern one.
 - is used for irrigation in places where water availability is poor.
- III. _____ are used for large scale storage of grains.
- IV. The strong triangular part of the plough is called _____ while the long rod is called


Select the option which correctly fills the blanks in any two of the given statements.


- (A) I Chain pump, Sprinkler system; III Silos
- (B) II Drip system; IV Plough shaft, Ploughshare
- (C) III Granaries; IV Hoe, Ploughshare
- (D) I Rahat, Chain pump; II-Sprinkler system
- 48. Study the given flow chart and select the option that correctly identifies the microorganisms W, X, Y and Z.

49. Refer to the organisms (i), (ii), (iii) and (iv) shown in the given figures and select the incorrect statement regarding them.

- (i) (ii) (iii) (iv)(A) Organism (i) lives in blood plasma of humans, enters cerebrospinal fluid and damages the brain.
- (B) Organism (ii) lives in large intestine of humans and infection occurs by ingesting cysts along with food and water.
- (C) Organism (iii) lives in small intestine of humans and infection occurs by ingesting soil infected with its eggs.
- (D) Organism (iv) lives in small intestine of humans and infection occurs by eating infected pork.

50. Which of the following statements is correct for the organism shown in the picture?

- (A) This organism became extinct due to invasion of exotic species.
- (B) The IUCN category to which this organism belongs also contains Quagga and Tasmanian wolf.
- (C) This organism is listed in Red Data Book under the extinct in wild category.
- (D) This organism is critically endangered due to continuous illegal poaching.

51. Select the option that correctly represents a Zea mays cell placed in 10% sucrose solution.

52. Sumit was studying the rate of reproduction process of an organism 'X'. He recorded the data obtained in a table as shown here:

Time	Number of individuals
12:00 PM	1
12:03 PM	8
12:06 PM	64

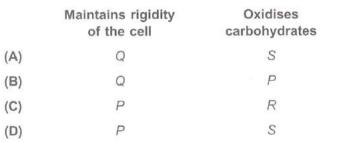
Which of the following options is correct regarding the organism 'X'?

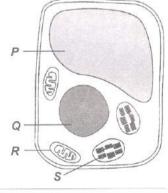
- (A) It reproduces every minute by multiple fission.
- (B) It reproduces every minute by binary fission.
- (C) It reproduces every two minutes by budding.
- (D) No assumptions can be made based on the given data.

The hormone estrogen stimulates development of secondary sexual characters in adolescents of a particular sex. Its effects include ______.

- (A) Broadening of shoulders
- (B) Deepening of voice
- (C) Growth of hair in armpits, pubic area and on face
- (D) Widening of pelvic region

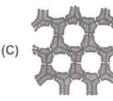

54. Acid rain occurs when sulphur dioxide and nitrogen oxides combine with water vapours in atmosphere and fall as rain. Which of the following is not caused by acid rain?

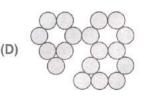

(A) Decreased quality of air


(B) Reduced growth of forests

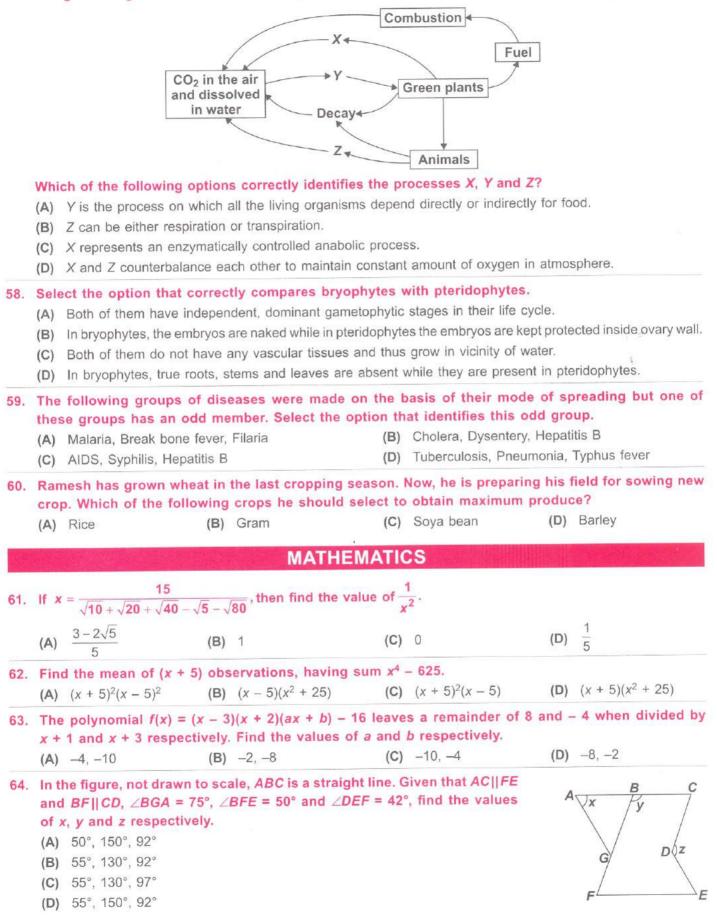
(C) Reduced pH of water bodies

(D) Destruction of marble buildings

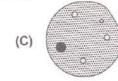



56. Ritu cut a section through stem of a dicotyledonous herb and observed it under a high power microscope. Which of the following tissues will she most likely observe in the region just below the epidermis?

10



S₽F


57. The given diagram shows the carbon cycle.

51. Select the option that correctly represents a Zea mays cell placed in 10% sucrose solution.

(D)

52. Sumit was studying the rate of reproduction process of an organism 'X'. He recorded the data obtained in a table as shown here:

Time	Number of individuals
	1
12:00 PM	
12:03 PM	8
	64
12:06 PM	04

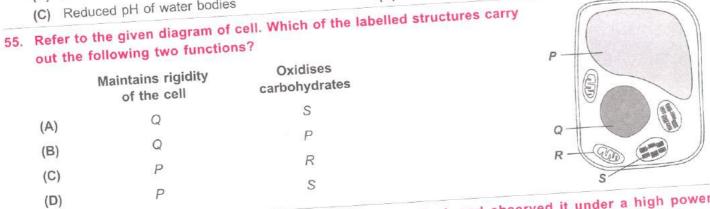
Which of the following options is correct regarding the organism 'X'?

(A) It reproduces every minute by multiple fission.

- (B) It reproduces every minute by binary fission.
- (C) It reproduces every two minutes by budding.
- (D) No assumptions can be made based on the given data.

53. The hormone estrogen stimulates development of secondary sexual characters in adolescents of a

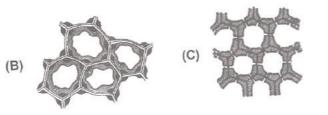
particular sex. Its effects include _____

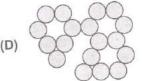

- (A) Broadening of shoulders
- (B) Deepening of voice
- (C) Growth of hair in armpits, pubic area and on face

54. Acid rain occurs when sulphur dioxide and nitrogen oxides combine with water vapours in atmosphere

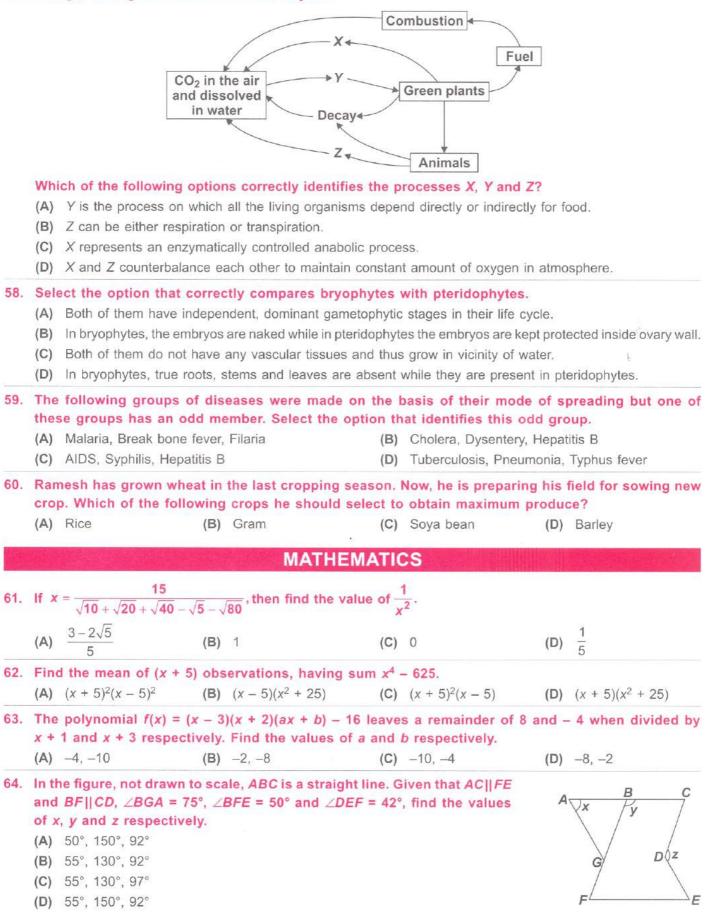
and fall as rain. Which of the following is not caused by acid rain?

(B) Reduced growth of forests (D) Destruction of marble buildings


(A) Decreased quality of air (C) Reduced pH of water bodies



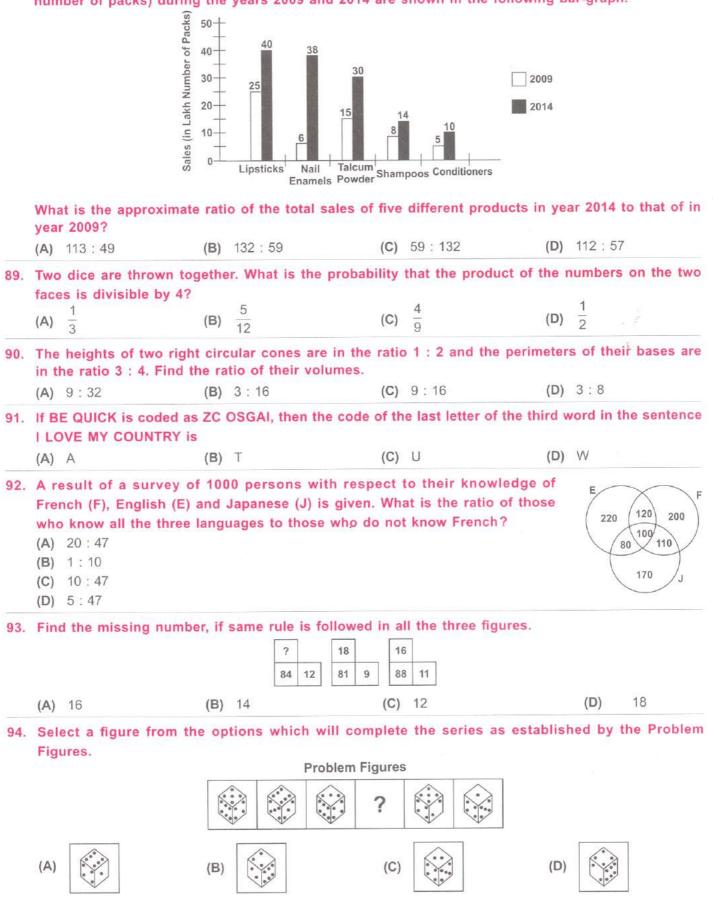
56. Ritu cut a section through stem of a dicotyledonous herb and observed it under a high power microscope. Which of the following tissues will she most likely observe in the region just below the




SQF

57. The given diagram shows the carbon cycle.

65.	If sl	ne spent a total of ₹		Sneha's expenditure then find the amoun			,	Transport	
	(A)	on the transport. ₹ 240					(162°
	(B)	₹ 200					En	90°	Food
		₹ 120					/	81° Shoppin	ng
	(C)							×	
	(D)	₹ 180						16.44	
66.		the ratio of area of wo identical circles i		naded region to the unum. (Take π = 3.14)	nsna	ded region in the giv	en ti	gure, if the	diameter
	(A)	3797 : 562					4		
	(B)	9493 : 1407					TO	5 cm/	12 cm
	(C)	9436 : 1407					4	10 cm	
	(D)	1407 : 436					4	25 cm	····>
67.		ought a tape recorde . Which of the follow		₹ 8,000 and sold it to option is true?	Q. (in turn sold it to R	eac	h earning a	a profit of
	(A)	P and Q earns the sa	me pro	ofit.	S (1)	P earns more profit th	han C	2.	
		P earns less profit that				Cannot be decided.			
68.				ses in such a manne sely with each other.		at remains _		and posit	tive, then
	(A)	ab, constant	(B)	ab, varying	(C)	a, constant	(D)	$\frac{a}{b}$, varying]
69.	Find	d the value of $\frac{4}{(216)^{-1}}$	2/3 ÷ ($\frac{1}{256)^{-3/4}} \div \frac{2}{(243)^{-1/5}}.$					
	(A)	$\frac{8}{3}$	(B)	$\frac{3}{8}$	(C)	1 6	(D)	<u>5</u> 8	
70.	Sele	ect the correct matcl	n .		•				
		$48^3 - 30^3 - 18^3 = 777$				$30^3 - 12^3 - 18^3 = 19$			
	(C)	$29^3 - 17^3 - 12^3 = 177$	748		(D)	$(0.2)^3 - (0.3)^3 + (0.1)$	$^{3} = 0.$.0018	
71.		How much paper of each shade is needed to make a kite given in figure, in which ABCD is a square with diagonal 44 cm.							
		Red	Yello	w	Gre	en	в	Yellow Green	
	(A)	121 cm ²	242 (cm ²	242	cm ²	P	Red Vellow	/-
	(B)	242 cm ²	484 (cm ²	242	cm ²		C.	
	(C)	121 cm ²	484 (cm ²	242	.04 cm ²		2º Green Ch	
	(D)	242 cm ²	484 (cm ²	373	.14 cm ²		14 cm	2
72.	is t	he triangles ABC and rue? ∆ABC ≅∆QPR	I PQR	$P_{A}, \text{ if } \angle A = \angle P, AB = PG$	Q and	I PQ = PR, then whic	h of	the follow ∧	ng option


- (B) $\angle B = \angle C$ and $\triangle ABC \cong \triangle PQR$
- (C) BC = PR and $\triangle ABC \cong \triangle PQR$
- (D) None of these

			Level II. & Arest view in Column III	
73.		I with their side view in co Column II	lumn II & front view in Column III. Column III	
	Column I Solid	Side view	Front view	
	-			
	(a)			
		(i)	(p)	
	(b)			
			(7)	
		(ii)	(q)	
	(c)			
		(iii)	(r)	··· (a)
	(A) (a) - (ii) - (p); (b) - (i		(B) (a) - (ii) - (p); (b) - (i) - (r); (c) - (ii)	
	(C) (a) - (ii) - (p); (b) - ((D) (a) - (iii) - (p); (b) - (i) - (r); (c) - (i	ii) - (p)
74.	Identify the wrong ste	p(s) Seema has done while	solving the given problem for x.	, F
	$(x-4)(x-2) = (x^2 - 8)$)		Ļ
	Step - 1 : $x(x - 2) - 4$	$(x-2) = x^2 - 8$		
	Step - II : $x^2 - 2x - 4$	$x + 8 = x^2 - 8$		
	Step - III : $x^2 - 6x + 8$ Step - IV : $x^2 - 6x + 8$	$= x^{2} - 8$		
	Step - IV : $x^2 = 6x + 6$ Step - V : $-6x + 16 =$			
	Step - VI : $6x = 16$	A		
	Step - VII : $x = 16 \div 6 =$	$= 8 \div 3 = \frac{8}{2}$		
	(A) Step II, III & IV	(B) Step II, IV & VI	(C) Only Step VII (D) All st	eps are correct.
				5
75.	A student is asked to	o find <i>n</i> , which is 5% of 32	2. He has used the proportion $\frac{n}{100} = \frac{1}{100}$	If he used
		at should be the right prop	portion?	
	(A) He should use $\frac{n}{100}$	$-=\frac{32}{2}$ to find <i>n</i> .	(B) He should use $\frac{n}{32} = \frac{5}{100}$ to find r	1.
	(C) He should use $\frac{n}{100}$	$r_{0} = \frac{32}{5} \times 100$ to find <i>n</i> .	(D) He used right proportion.	
76	If $(2x + 5)$ is a factor	of $2x^2 - k$, then value of k	is	
70.				
	(A) $\frac{-25}{2}$	(B) -1	(C) 25 (D) $\frac{1}{2}$	
77.	A point is defined as			
	(A) That which has ler	ngth, breadth, height.	(B) No small part of a line with no l	ength.
		it represented by dot only.	(D) None of these	
78		e, TU SR and TR SV, th	nen find a and b P	
10	respectively.		a 90	° 115° b V
	(A) 50°, 25°			U
	(B) 20°,65°		40° R	
	(C) 45°,55°			s
	(D) 95°, 35°		ч <u>с</u> .	3
				010

79.	In the giv	en figures, A	D and PE are tl	ne medians. T	hen	value of <i>PR</i> is	A		P
	(A) 7 cm						om	50	Á
	(B) 3 cm						· > ×	= 1.00	Xŧ
	(C) 5 cm						B 3.5 cm	D C	Q E F
	(D) 6 cm								
80.			Column I and C linates of a poi		nate	e is –5 and absci	ssa is 4	4. is	
	Colui					Column II			
	(a) lying	in I st quad.			(i)	having (ordinate	, absci	ssa)	
		in II nd quad.			(ii)	having (-ordina	te, abso	cissa)	
		in IIIrd quad.			(iii)	having (absciss	a, ordin	ate)	
		in IV th quad.			(iv)	having (- abscis	ssa, – o	rdinate)	
	(A) b and	(iii)	(B) a and (i)		(C)	c and (iii)	(D)	d and	(iii)
01.	18 m and	40 m. He wan f the bigger i	ts to give indep	endent charg himself, then	e to fin	his sons, so he d the total area o 180 m ²	divided listribul	the field	in the ratio
82.	Which of	the following	option is corre	ct?	0.0				
	arango osno os			360	1				
	(A) Numb	er of sides of r	egular polygon =	180° - each int	orio	angle			-
	(B) Each	interior angle c	of a regular polyg	on of <i>n</i> sides =	$\frac{n \times n}{n}$	180° -2			
	(C) Each	nterior angle o	f a regular polyg	on of <i>n</i> sides =	<u>(n</u> -	$\frac{(-2)\times90^{\circ}}{n}$			
			polygon = $\frac{1}{360^\circ - 1}$						
83.		+ c ³ = 3abc a	nd a + b + c =	0, then find th	e v	alue of $\frac{(b+c)^2}{3bc} + \frac{(b+c)^2}{bc}$	<mark>c + a)² +</mark> 3ac +	$\frac{(a+b)^2}{3ab}.$	
	(A) -1		(B) 3	(C)	1	(D)	0	
34.	$\frac{1}{(\sqrt{9}-\sqrt{8})}$	$\frac{1}{(\sqrt{8}-\sqrt{7})}+\frac{1}{(\sqrt{8}-\sqrt{7})}$	$\frac{1}{\sqrt{7}-\sqrt{6}}-\frac{1}{(\sqrt{6}-\sqrt{6})}$	$(\sqrt{5}) + \frac{1}{(\sqrt{5} - \sqrt{4})}$	is e	qual to			
	(A) 0		(B) $\frac{1}{3}$	(C)	1	(D)	5	
5.	If one nun are	nber is 80% o	5		1	of their square			ne numbers
	(A) 4,5		(B) 8, 10	1	C)	16, 20	(D)	None of	these
6.	The different at the end	of 4 years is	the compound	interest and nd out the sur	the	simple interest of the follo	arned	on a sur	n of money
		t of simple ir f interest per	nterest accrued annum.	after 4 years.					
		is necessary		(B)	Only Q is necessa	rv		
		P or Q is nece	essary			Neither P nor Q is	-	ary	
7.	A square a	nd an equilat rea of the tria	eral triangle hav	ve equal perim	ete	rs. If the diagona	l of the	square i	s 12√2 cm,
	then the a	ica of the the	ingle is						

88. A cosmetic company produces five different products. The sales of these five products (in lakh number of packs) during the years 2009 and 2014 are shown in the following bar-graph.

15

Class-9

95.	A solid cube of each side 8 cm, has been painted red, blue and black on pairs of opposite faces. It is then cut into cubical blocks of each side 2 cm. How many cubes have three faces painted with different colours?							AVAVAV 17 AVAVAV AVAVAV 17 AVAV	Red	
	(A)	0				2 cn	n‡		Black	
	(B)	4								
	(C)	8								
	(D)	12								
6.	Which of the following vary inversely with each other?									
	(A)	(A) Speed and distance covered			(B)	Distance covered ar	nd taxi	fare		
	(C) Distance travelled and time taken				Coord and time tak	~ ~				
7.	A ci	ircle of maximum	possibl	e size is cut from a		e sheet of board. S	Subse			
	A ci max (A)	ircle of maximum kimum possible si $\frac{3}{4}$ of original squar	possibl ze is cu e (B)	e size is cut from a t from the resultant $\frac{1}{2}$ of original square	a squar t circle. (C)	e sheet of board. S What will be the a $\frac{1}{4}$ of original square	Subse irea of (D)	the fina $\frac{2}{3}$ of orig	I square? ginal square	
	A ci max (A) A re	ircle of maximum kimum possible si $\frac{3}{4}$ of original squar ectangular sheet of	possibl ze is cu e (B) of paper	e size is cut from a t from the resultan	a squar t circle. (C) ferent w	e sheet of board. S What will be the a $\frac{1}{4}$ of original square ways to form two di	Subse irea of (D)	the fina $\frac{2}{3}$ of orig	I square? ginal square	
	A ci max (A) A re ratio	ircle of maximum kimum possible si $\frac{3}{4}$ of original squar ectangular sheet of	possibl ze is cu e (B) of paper ylinders	e size is cut from a t from the resultant $\frac{1}{2}$ of original square is rolled in two diff	a squar t circle. (C) ferent w ures 44	e sheet of board. S What will be the a $\frac{1}{4}$ of original square ways to form two di	Subse irea of (D)	the fina $\frac{2}{3}$ of orig	I square? ginal square	
8.	A ci max (A) A re ratio (A)	ircle of maximum kimum possible si $\frac{3}{4}$ of original squar ectangular sheet of o of volumes of c 2 : 3	possibl ze is cu e (B) of paper ylinders (B)	le size is cut from a t from the resultant $\frac{1}{2}$ of original square is rolled in two diff , if the sheet measure	a squar t circle. (C) ferent w ures 44 (C)	e sheet of board. S What will be the a $\frac{1}{4}$ of original square ways to form two di cm \times 33 cm. 1 : 3	Subse rea of (D) ifferen (D)	the fina $\frac{2}{3}$ of orig t cylinde 1:4	I square? ginal square	
8.	A ci max (A) A re ratio (A)	ircle of maximum kimum possible si $\frac{3}{4}$ of original squar ectangular sheet of o of volumes of c 2 : 3 = -1 and b = 2, the	possibl ze is cu e (B) of paper ylinders (B)	le size is cut from a t from the resultant $\frac{1}{2}$ of original square is rolled in two diff , if the sheet measure 3 : 4 the value of $(a^b + b)$	a squar t circle. (C) ferent w ures 44 (C)	e sheet of board. S What will be the a $\frac{1}{4}$ of original square vays to form two di cm × 33 cm. 1 : 3 $- b^a$) × (a^b × b^2) ×	Subse rea of (D) ifferen (D)	the fina $\frac{2}{3}$ of orig t cylinde 1 : 4 a^{a}).	I square? ginal square	
8.	A ci max (A) A re ratio (A) If a (A)	ircle of maximum kimum possible si $\frac{3}{4}$ of original squar ectangular sheet of o of volumes of c 2 : 3 = -1 and b = 2, the 1	possibl ze is cu e (B) of paper ylinders (B) nen find (B)	le size is cut from a t from the resultant $\frac{1}{2}$ of original square is rolled in two diff , if the sheet measure 3 : 4 the value of $(a^b + b)$	a squar t circle. (C) ferent w ures 44 (C) p^a × (a^b (C)	e sheet of board. S What will be the a $\frac{1}{4}$ of original square rays to form two di cm × 33 cm. 1 : 3 $-b^a$) × (a^b × b^2) × 6	Subse irea of (D) (fferen (D) (a ^b + k (D)	the fina $\frac{2}{3}$ of orig t cylinde 1 : 4 1 ^a). 3	I square? ginal square	